- (Introduction) - Inclusive cross section & extraction - Differential cross section & extraction - Conclusions Andreas Jung (Purdue U) for the DØ collaboration American Physical Society – Division of Particle & Fields \sqrt{s} =1.96 TeV - Peak luminosities: 3 − 4 x 10³² cm⁻²s⁻¹ - ~10 fb⁻¹/experiment recorded - Tevatron shutdown September 2011 #### General purpose 4π detectors: - Tracker: Detection and momentum measurement for charged particles - Calorimeter: Identification and energy measurement of jets and electrons - Muon system: Identification and momentum measurement of muons ## 8 # Top quark — introduction - Top is the heaviest fundamental particle discovered so far dilepton - $\rightarrow m_t = 173.34 \pm 0.76 \text{ GeV}$ [arxiv:1403.4427] - \bullet Lifetime: τ ~ $5x10^{\text{-}25}\,s,\,\tau<1/\Lambda_{_{QCD}}<< m_{_{t}}/\Lambda^{_{_{QCD}}}$ - → Observe bare quark properties - Large Yukawa coupling to Higgs boson - $\rightarrow \lambda_t \sim 1$ only m_t is natural mass Special role in electroweak symmetry breaking? **Top Pair Branching Fractions** 00000 00000 proton protor antiproton BR, bg increase A. Jung # Top quark mass - Self-consistency test of the SM & stability of the EW vacuum both rely/use pole mass – method dependent - Indirect extraction from e.g. cross section, end point, J/psi method - → top quark pole mass - Direct methods e.g. template, matrix element, likelihood, ideogram - → "MC" mass, close to pole mass #### Caveat: - "MC" mass different from the pole mass - Estimates: O(0.5 GeV) difference to pole mass PRL 117, 232001 (2016) - Simultaneous measurement of the ttbar cross section in the I+jets and dilepton channel - Combined MVA discriminant, using nuisance parameters - Separated by lepton flavor and #jets - Optimized for smallest uncertainty of extracted top quark pole mass Phys. Rev. D 94, 092004 (2016) ### Inclusive cross section - Simultaneous measurement of the ttbar cross section in the I+jets and dilepton channel - Combined MVA discriminant, using nuisance parameters - Separated by lepton flavor and #jets - Optimized for smallest uncertainty of extracted top quark pole mass Phys. Rev. D 94, 092004 (2016) $\sigma_{tot} = 7.26 \pm 0.12 \text{ (stat.)} \pm 0.54 \text{ (syst.)} \text{ pb } \delta_{S/S} = 7.6\%$ ## Inclusive cross section - Repeat experimental measurement procedure for every mass point - Systematic uncertainties taken at each mass point, except signal model (scaled from the 172.5 GeV case) - Characterize slope by 4th order polynomial, use likelihood approach and compare with NNLO+NNLL predictions by top++ (Czakon et al.) - Maximum of normalized combined likelihood function: $L(m_t) = \int f_{\text{exp}}(\sigma|m_t) \left[f_{\text{scale}}(\sigma|m_t) \otimes f_{\text{PDF}}(\sigma|m_t) \right] d\sigma$ | Cross section $\sigma(t\bar{t})$ [pb]
$0.70 \pm 0.16 \text{ (stat.)}^{+0.73}_{-0.67} \text{ (syst.)}$ | |--| | $0.70 \pm 0.16 (\text{stat.})^{+0.73}_{-0.67} (\text{syst.})$ | | /-0.07 (7 / 7 | | $0.25 \pm 0.14 (\mathrm{stat.})^{+0.63}_{-0.57} (\mathrm{syst.})$ | | $7.46 \pm 0.13 (\mathrm{stat.})^{+0.58}_{-0.51} (\mathrm{syst.})$ | | $7.55 \pm 0.13 (\mathrm{stat.})^{+0.58}_{-0.55} (\mathrm{syst.})$ | | $7.26 \pm 0.12 (\mathrm{stat.})^{+0.57}_{-0.50} (\mathrm{syst.})$ | | $7.28 \pm 0.12 (\mathrm{stat.})^{+0.54}_{-0.49} (\mathrm{syst.})$ | | $0.86 \pm 0.12 (\mathrm{stat.})^{+0.53}_{-0.47} (\mathrm{syst.})$ | | $0.50 \pm 0.11 (\mathrm{stat.})^{+0.50}_{-0.43} (\mathrm{syst.})$ | | $6.70 \pm 0.11 \text{ (stat.)}^{+0.60}_{-0.47} \text{ (syst.)}$ | | | Phys. Rev. D 94, 092004 (2016) $\delta m_{t}/m_{t} = 1.9\%$ #### Differential cross sections - Measured in the I+jets channel, using full D0 data set - Employ a MVA discriminant to determine sample composition (W+light quark jets vs. W+heavy quark jets vs. ttbar) - Top quarks reconstructed by kinematic fit (chi2 based), best permutation used - Uses regularized matrix unfolding to correct for detector effects & acceptance Phys. Rev. D 90, 092006 (2014) - Typical precision is about 4-5% in bulk of the data - Full covariance matrix provided for model builders - Constrains low mass axi-gluons #### Predictions & Uncertainties (NNLO) - Shows selected set of predictions and scale uncertainties - Sensitive in ttbar mass threshold region and 1st to 4th bin of pT(t/tbar) #### Theoretical uncertainties - Shows selected set of predictions and D0 data - Sensitive in ttbar mass threshold region and 1st to 4th bin of pT(t/tbar) 200 300 400 $p_{\tau}(t/\overline{t})$ [GeV] 500 100 200 100 $p_{\tau}(t/\overline{t})$ [GeV] - As an example shown for MSTW2008NNLO - NNPDF, CT10, HERAPDF1.5 as well - NLO and NNLO - Derive a chi2 per mass hypothesis - Includes the correlations of statistical uncertainty due to the use of reg. MU $$\chi^2 = \sum_{i,j} (x_i^{\text{true}} - x_i^{\text{theo}}) \cdot \mathbf{V}_{\mathbf{xx}; \mathbf{i}, \mathbf{j}}^{-1} \cdot (x_j^{\text{true}} - x_j^{\text{theo}})$$ - Minimum of parabola is preferred top mass - Delta chi2 = 1 yields uncertainty - Combination of pT & mTT uses correlations in MC@NLO between those to derive combined chi2 → top mass via same approach | Order & PDF | | $m_t^{ m pole} \; [{ m GeV}]$ | | |-------------|-----------------|-------------------------------|-----------------------------------| | | $m(tar{t})$ | $p_T^{ m top}$ | $m(tar{t})\oplus p_T^{ ext{top}}$ | | NLO: | | | | | MSTW2008 | 169.3 ± 5.7 | 166.8 ± 2.9 | 167.4 ± 2.5 | | CT10 | 169.4 ± 5.9 | 167.9 ± 3.0 | 167.5 ± 2.6 | | NNPDF2.3 | 169.0 ± 6.0 | 166.4 ± 2.9 | 167.1 ± 2.5 | | HERAPDF1.5 | 167.2 ± 6.4 | 166.0 ± 2.9 | 165.1 ± 2.7 | | NNLO: | | | | | MSTW2008 | 170.7 ± 5.6 | 168.0 ± 2.5 | 168.5 ± 2.3 | | CT10 | 171.5 ± 5.5 | 169.4 ± 2.4 | 169.7 ± 2.2 | | NNPDF2.3 | 171.1 ± 5.6 | 168.5 ± 2.5 | 169.0 ± 2.3 | | HERAPDF1.5 | 172.6 ± 5.6 | 170.3 ± 2.6 | 170.2 ± 2.3 | TABLE II. Extracted top quark pole mass at NLO and at NNLO pQCD employing the absolute differential cross section as a function of $m(t\bar{t})$ or $p_T^{\rm top}$ and its combination for the MSTW2008, CT10, NNPDF2.3, and HERAPDF1.5 PDF. - Average top quark mass following this approach: - Use only the three global PDFs (MSTW2008, CT10, NNPDF23) - Follow PDF4LHC: PDF uncertainty is max difference added in quadrature - Using HERA results in a shift of -0.5 at NLO and +0.3 at NNLO, similar uncertainties...shifts due to different xsec prediction when using HERA | | $m_t^{\text{pole}} \pm \delta_{\text{tot.}} \text{ [GeV]}$ | $\delta_{\text{exp}} [\text{GeV}]$ | $\delta_{ m theo}^{ m scale} \ [{ m GeV}]$ | | |-------------|--|------------------------------------|--|--| | Order & PDF | $m(tar{t})\oplus p_T^{ ext{top}}$ | $m(tar{t}) \oplus p_T^{ ext{top}}$ | $m(t\bar{t}) \oplus p_T^{\mathrm{top}}$ | | | NLO | | | | | | MSTW2008 | 167.4 ± 2.5 | ± 2.0 | ± 1.5 | | | CT10 | 167.5 ± 2.6 | ± 2.0 | ± 1.6 | | | NNPDF2.3 | 167.1 ± 2.5 | ± 2.0 | ± 1.5 | | | HERAPDF1.5 | 165.1 ± 2.7 | ± 2.3 | ± 1.5 | | | NNLO | | | | | | MSTW2008 | 168.5 ± 2.3 | ± 2.2 | ± 0.7 | | | CT10 | 169.7 ± 2.2 | ± 2.0 | ± 0.9 | | | NNPDF2.3 | 169.0 ± 2.3 | ± 2.1 | ± 0.8 | | | HERAPDF1.5 | 170.2 ± 2.3 | ± 2.2 | ± 0.7 | | TABLE III. Extracted $m_t^{\rm pole}$ at NLO and at NNLO employing the combined χ^2 in $m(t\bar{t})$ and $p_T^{\rm top}$ distributions for the MSTW2008, CT10, NNPDF2.3, and HERAPDF1.5 PDF. The special setting to separately determine the theoretical uncertainty (for details see text) neglects the correlations between the bins of a measured distribution. - Showing only the combined mass results and breakdown in uncertainty due to experimental sources and theoretical - NNLO scale uncertainties smaller by a factor of 2 compared to NLO ### Results & comparisons Consistent amongst all the PDFs & able to compete with LHC results $$m_{t} = 169.1 \pm 2.2 \text{ (exp)} \pm 0.8 \text{ (scale)} \pm 1.2 \text{ (PDF)} \text{ GeV}$$ $\delta m_1/m_1 = 1.5\%$ - Extractions of the top quark mass from cross sections - Inclusive extraction, most precise at Tevatron $$m_t = 172.8 \pm 1.1 \text{ (theo)} \pm 3.2 \text{ (exp)} \text{ GeV}$$ $\delta m_t/m_t = 1.9\%$ Differential extraction, additional improvement by 25% $$m_t = 169.1 \pm 2.2 \text{ (exp)} \pm 0.8 \text{ (scale)} \pm 1.2 \text{ (PDF)} \text{ GeV} \quad \delta m_t / m_t = 1.5\%$$ D0 6473 Ongoing work for combination, needs detailed study of correlations Thank you! D0 Top Web pages